Shadows of Blow-up Algebras
نویسنده
چکیده
We study di erent notions of blow-up of a scheme X along a subscheme Y , depending on the datum of an embedding of X into an ambient scheme. The two extremes in this theory are the ordinary blow-up, corresponding to the identity, and the `quasi-symmetric blow-up', corresponding to the embedding of X into a nonsingular variety. We prove that this latter blow-up is intrinsic of Y and X , and is universal with respect to the requirement of being embedded as a subscheme of the ordinary blow-up of some ambient space along Y . We consider these notions in the context of the theory of characteristic classes of singular varieties. We prove that if X is a hypersurface in a nonsingular variety and Y is its `singularity subscheme', these two extremes embody respectively the conormal and characteristic cycles of X . Consequently, the rst carries the essential information computing Chern-Mather classes, and the second is likewise a carrier for Chern-SchwartzMacPherson classes. In our approach, these classes are obtained from Segre class-like invariants, in precisely the same way as other intrinsic characteristic classes such as those proposed by Fulton, and by Fulton and Johnson. We also identify a condition on the singularities of a hypersurface under which the quasi-symmetric blow-up is simply the linear ber space associated with a coherent sheaf.
منابع مشابه
A note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملBLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM
In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...
متن کامل